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Abstract

We empirically study the relationship be-
tween supervised and multiple instance (MI)
learning. Algorithms to learn various con-
cepts have been adapted to the MI represen-
tation. However, it is also known that con-
cepts that are PAC-learnable with one-sided
noise can be learned from MI data. A rel-
evant question then is: how well do super-
vised learners do on MI data? We attempt
to answer this question by looking at a cross
section of MI data sets from various domains
coupled with a number of learning algorithms
including Diverse Density, Logistic Regres-
sion, nonlinear Support Vector Machines and
FOIL. We consider a supervised and MI ver-
sion of each learner. Several interesting con-
clusions emerge from our work: (1) no MI al-
gorithm is superior across all tested domains,
(2) some MI algorithms are consistently su-
perior to their supervised counterparts, (3)
using high false-positive costs can improve a
supervised learner’s performance in MI do-
mains, and (4) in several domains, a super-
vised algorithm is superior to any MI algo-
rithm we tested.

1. Introduction

The Multiple Instance (MI) setting was introduced by
Dietterich et al. (1997) in the context of drug activity
prediction. In a multiple instance problem, instances
are naturally organized into bags (i.e., multisets) and
it is the bags, instead of individual instances, that are
labeled for training. MI learners assume that every
instance in a bag labeled negative is actually negative,
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whereas at least one instance in a bag labeled posi-
tive is actually positive. Note that a positive bag may
contain negative instances.

Since its introduction, a wide variety of tasks have
been formulated as multiple-instance learning prob-
lems. Among these tasks are content-based image
retrieval (Maron & Ratan, 1998; Andrews et al.,
2003), stock prediction (Maron, 1998), text classifica-
tion (Andrews et al., 2003), and protein family mod-
eling (Tao et al., 2004). Various algorithms have been
introduced for learning in the MI setting. In their
original work, Dietterich et al. (1997) described an al-
gorithm to learn axis-parallel rectangles (APRs) from
MI data. A framework called Diverse Density (Maron,
1998) has been proposed and used to learn Gaussian
concepts. Others have proposed algorithms adapting
Support Vector Machines (Andrews et al., 2003; Gart-
ner et al., 2002) to this problem, either by changing
the objective function or the kernel used. Some ap-
proaches using lazy learning (Wang & Zucker, 2000)
and decision trees (Ruffo, 2000) have been investigated
in this context as well. Recently, work has been done
investigating the use of ensembles (Auer & Ortner,
2004) to learn multiple-instance concepts.

Although MI learning has been investigated in this
wide range of problem domains with a wide range of
approaches, most studies have empirically compared
only a few approaches using only a few (often one)
data sets. Because of the limited scope of these studies,
there is not a clear sense of which multiple instance al-
gorithms might be best suited to which domains. Does
there exist a single MI algorithm well suited to every
MI domain, or, even if not always the best, is consis-
tently among the best algorithms for these tasks? We
attempt to answer this question in our current work.

Another interesting question concerns the relationship
between ordinary supervised and MI learning. In their
work on the theory of learning from MI examples,
Blum and Kalai (1998) show that a concept that is
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PAC-learnable with one-sided classification noise is
PAC-learnable from MI examples. Put in an empir-
ical context, this result can imply that, given enough
examples, transforming an MI dataset into a standard
supervised representation can allow a supervised learn-
ing algorithm to successfully learn the underlying in-
stance concept. While the result is only applicable to
PAC-learnable concepts, one may hypothesize that it
holds for other concepts in practice. Thus, a relevant
question is, how well do supervised algorithms learn
from MI data in general? This question has not been
addressed in previous research on MI learning.

Here, we address these questions by conducting an em-
pirical evaluation in which we apply a wide variety of
multiple-instance learning methods to a wide range of
tasks that have been previously considered in the MI
literature. Moreover, to address the question of how
well supervised learning methods learn in MI domains,
our experiments also evaluate a supervised-learning
counterpart for every MI algorithm we consider. Each
of these counterparts is able to represent and search
exactly the same concept class as its MI partner.

2. Algorithms

In this section, we describe the algorithms we use in
our experiments. Diverse Density is perhaps the
best known framework for MI learning (Maron, 1998).
The idea behind this approach is that, given a set of
positive and negative bags, we wish to learn a concept
that is “close” to at least one instance from each pos-
itive bag, while remaining “far” from every instance
in every negative bag. Thus, the concept must de-
scribe a region of instance space that is “dense” in
instances from positive bags, and is also “diverse” in
that it describes every positive bag. More formally,
let DD(t) = 1

Z

(∏
i Pr(t|B+

i )
∏

i Pr(t|B−
i )

)
, where t is

a candidate concept, B+
i represents the ith positive

bag, and B−
i represents the ith negative bag. We seek

a concept that maximizes DD(t). The concept gener-
ates the instances of a bag, rather than the bag itself.
To score a concept with respect to a bag, we combine
t’s probabilities for instances using a function based
on noisy-or (Pearl, 1988):

Pr(t|B+
i ) ∝ (1 −

∏
j

(1 − Pr(B+
ij ∈ t))) (1)

Pr(t|B−
i ) ∝

∏
j

(1 − Pr(B−
ij ∈ t)) (2)

Here the instances B+
ij and B−

ij belonging to t are the
“causes” of the “event” that “t is the target”. The con-
cept class investigated by Maron (1998) is the class of
generative Gaussian models, which are parameterized

by the mean μ and a “scale” s = 1
2σ2 :

Pr(Bij ∈ t) ∝ e−
∑

l
(sl(Bijl−μl)

2),

where l ranges over features.

To apply a standard supervised learning algorithm to
MI data, we could pick a point from a positive bag
at random and call it positive, as suggested previously
(Blum & Kalai, 1998). In practice, positive bags may
have multiple positive instances. Thus, we convert MI
data to a supervised sample by assuming that the label
of a bag applies to each instance it contains.

A simple Gaussian model is the supervised learn-
ing counterpart of Diverse Density. This model max-
imizes DD(t) with the noisy-or replaced by simple
product. In this case, equation (1) is replaced by
Pr(t|B+

i ) ∝
(∏

j Pr(B+
ij ∈ t)

)
, everything else remain-

ing the same. Thus, this algorithm assumes that every
instance in a positive bag is labeled positive. Observe
that, since every instance in a negative bag is consid-
ered to be truly negative in the MI setting, we do not
need to change the part of the objective function deal-
ing with negative bags when translating the data to a
supervised learning setting.

Diverse Density with k disjuncts is a variant of
Diverse Density investigated by Maron in his work
(1998). This is a class of disjunctive Gaussian con-
cepts, where the probability of an instance belonging
to a concept is given by the maximum probability of
belonging to any of the disjuncts:

Pr(Bij ∈ {t1, . . . tk})) ∝
softmaxα(Pr(Bij ∈ t1), . . . ,Pr(Bij ∈ tk)),

where

softmaxα(x1, . . . , xn) =

∑
1≤i≤n xie

αxi

∑
1≤i≤n eαxi

is a smooth approximation to the “max” function (the
approximation improves as α is increased). In this
work, we investigate Diverse Density with k = 3 and
k = 5 disjuncts, abbreviated as DD(3) and DD(5).
For consistency, we abbreviate the original Diverse
Density algorithm as DD(1).

A Statistic Kernel has been proposed (Gartner
et al., 2002) to adapt Support Vector Machines to
the MI framework. This kernel is a function over
bags rather than instances. It is defined by trans-
forming a bag into a single feature vector and then
applying a polynomial kernel to this representation.
The specific transformation applied is as follows. Let
Bi = {Bi1, Bi2 . . . Bin} be a bag of instances, and let
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each instance be described by a feature vector of length
m. Then we define a feature vector of length 2m for
the bag, where the jth feature is the minimum of the
jth feature across every instance of the bag, and the
2jth feature is the maximum of the jth feature across
every instance of the bag. Thus, this transform as-
sumes that the discriminant will be a function of the
extreme values of each feature in a bag, and not of
the intermediate ones. Note that this is not a “true”
multiple instance kernel, since the transformed feature
vector is not a function of any single instance – in fact,
each min/max feature value could be from a different
instance in the bag. In our work, we use a quadratic
kernel with this transformed feature vector.

A Normalized Set Kernel (NSK) has also been pro-
posed (Gartner et al., 2002) for SVM classifiers ap-
plied to MI problems. This is defined as follows. Let
κ be a kernel defined on the space of instances, and
let X and Y be sets of instances. Then kset(X,Y ) =∑

x∈X,y∈Y κ(x, y) is a kernel on the sets X and Y . The
normalized set kernel is defined as:

n(X,Y ) =
kset(X,Y )√

kset(X,X) · √kset(Y, Y )

In the MI representation, we can apply this kernel to
bags of instances. The normalization factor is neces-
sary to correct for varying bag sizes. While Gartner et
al. use a Gaussian kernel for κ, we report results us-
ing a Quadratic kernel, to be consistent with the other
SVM learners we use. Further, we have run our exper-
iments using both and have found that the Quadratic
kernel generally results in more accurate models.

For our supervised counterpart to the above, we use a
simple Quadratic Kernel over instances in bags. As
before, in this setting, we assume that every instance
in a bag has the same label as that of the bag.

Relational learners like FOIL (Quinlan, 1990) can nat-
urally handle the multiple instance representation. In
our experiments, we apply FOIL to instances described
in a single table of attribute-value pairs. We construct
an MI representation for a task by defining a target re-
lation over bags (for example, pos-bag(B)). Each posi-
tive bag is specified to satisfy the target, while no neg-
ative bag does so. An instance relation, instance(B,N),
is then defined that describes each instance N in each
bag B. This representation biases FOIL to learn rules
of the form pos-bag(B) :- instance(B,N), properties-of-
N. These rules represent an MI concept, where a bag is
positive if any instance in it satisfies the learned prop-
erties. We can also use FOIL in a supervised setting
by defining a target relation over instances. In partic-
ular, we define a target relation, pos-instance(N), and
specify that every instance from a positive bag in our

training set satisfies this relation, while no instance
from a negative bag does. In either setting, in our
domains, FOIL learns clauses similar to axis-parallel
rectangles, where each literal defines an upper or lower
bound on the value of some variable in the head of the
clause (or in the instance literal). The same algorithm
is used in both cases, but to distinguish the former
representation from the latter in our experiments, we
call the former MI/FOIL.

We have designed a novel algorithm, Multiple In-
stance Logistic Regression, to learn linear mod-
els in an MI setting. This algorithm is derived by
generalizing the Diverse Density framework. In mul-
tiple instance classification, we seek Pr(yi = 1|Bi =
{Bi1, Bi2 . . . Bin}), the conditional probability of the
label of the ith bag being positive given the instances in
the bag. If we are given a model that can estimate the
equivalent probability for an instance, Pr(yij = 1|Bij),
we can use a combining function, such as softmax, to
combine the posterior probabilities over the instances
of a bag and obtain an estimate for the posterior prob-
ability Pr(yi = 1|Bi). Observe that, in this case, it is
the combining function that encodes the multiple in-
stance assumption. Thus, if one of the instances is
very likely to be positive, as determined by the in-
stance model, the combining function must be such
that its estimate of the bag’s positive-ness will be high.
Further, observe that this general setting allows any
model that can learn class conditional probabilities in
a supervised setting to be used in a multiple instance
setting as well. In our work, we use the Logistic Re-
gression (LR) algorithm with parameters (w, b) to es-
timate conditional probabilities for each instance, and
use softmax to combine these to obtain the conditional
probabilities for each bag:

Sij = Pr(yij = 1|Bij) =
1

1 + e−(w·Bij+b)

Pr(yi = 1|Bi) = softmaxα(Si1, . . . , Sin)

We call this algorithm Multiple Instance Logistic Re-
gression, abbreviated MI/LR. The supervised learn-
ing counterpart to this algorithm is ordinary Logistic
Regression. A similar approach, that averages the in-
stances probabilities to obtain bag probabilities, has
been investigated previously (Xu & Frank, 2004).

3. Problem Domains

In this section, we give brief overviews of the domains
we consider in our experiments, and how the multiple
instance representation has been used in each case.

Drug activity was the motivating application for
the multiple instance representation (Dietterich et al.,
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1997). In this domain, we wish to predict how strongly
a given molecule will bind to a target. Each molecule
is a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know that
for every molecule showing activity, at least one its
low energy conformations possesses the right shape for
interacting with the target. Similarly, if the molecule
does not show drug-like activity, none of its confor-
mations possess the right shape for interaction. Thus,
each molecule is represented as a bag, where each in-
stance is a low energy conformation of the molecule.
A well-known example from this domain that we use
in our experiments is the MUSK dataset. The posi-
tive class in this data consists of molecules that smell
“musky”. This dataset has two variants, MUSK1 and
MUSK2, both with similar numbers of bags, but with
MUSK2 having many more instances per bag.

Content Based Image Retrieval (CBIR) is another
domain where the MI representation has been used
(Maron & Lozano-Pérez, 1998; Zhang et al., 2002).
In this domain, the task is to find images that con-
tain objects of interest, such as tigers, in a database
of images. An image is represented by a bag. An
instance in a bag corresponds to a segment in the im-
age. The underlying assumption is that the object of
interest is contained in (at least) one segment of the
image. In our experiments, we use two sets of CBIR
data. The first task is to separate three categories of
animals, Tiger, Elephant, and Fox, from background
images (Andrews et al., 2003). The second task is
to separate natural scenes with specific features from
others (Zhang et al., 2002). We use the categories of
Flower, Sunset and Waterfall from this set. Negative
examples for each category consist of images from the
other categories as negative examples, along with im-
ages from the categories Mountain and Field.

The identification of TrX proteins has recently
been framed as a multiple instance problem (Tao et al.,
2004). The objective is to classify given protein se-
quences according to whether they belong to the fam-
ily of TrX proteins. The given proteins are first aligned
with respect to a motif that is known to be conserved
in members of the family. Each aligned protein is rep-
resented by a bag. A bag is labeled positive if the pro-
tein belongs to the family, and negative otherwise. An
instance in a bag corresponds to a position in a fixed
length sequence around the conserved motif. Each po-
sition is described by properties of the amino acid at
that position, and smoothed using the same properties
from its 16 neighbors.

Text Categorization is the final domain that we con-
sider that has used the MI representation. In our ex-

Protein: Mitochondrial 28S ribosomal protein S14

Article: PUBMED ID 10938081

...Three of the four currently identified mammalian mi-

tochondrial small subunit ribosomal proteins that have

prokaryotic homologs (S7, S10, and S14) are located

in the head of the small subunit...

⇓
Gene Ontology Code: GO:0003735
(structural constituent of ribosome)

Figure 1. An example of the BioCreative task. Given a
protein name and the text of an article, annotate the pro-
tein with Gene Ontology codes the article has evidence for.

periments, we use a novel data set for this task ob-
tained as part of Task 2 of the BioCreative Text Min-
ing Challenge (Blaschke et al., 2005). In this task,
we are given full-text articles from biomedical jour-
nals and the names of human proteins. The objective
is to label each article and protein with codes from
the Gene Ontology (GO). The GO consists of three
hierarchical domains of standardized biological terms
referring to cellular components, biological processes
and molecular functions. Each such term is mapped
to a unique “GO code”. A <protein, article> pair is
labeled with a GO code if the article contains text that
links the protein to the component, process or function
described by the GO code. An example of the task is
shown in Figure 1. We develop a two-stage system to
solve this task. The first stage identifies all passages in
the text that contain the protein of interest and some
weak evidence about an arbitrary GO code. In the
second stage, we learn a model to predict how likely
it is that a document actually relates the protein to
the GO code, given the output of the first part. To
learn such a model, we could assume that every pas-
sage in a training document that mentions the protein
and some text supporting the GO code also relates
the protein to the GO code. However, this is not a
realistic assumption. Usually, in a training document
annotated with a GO code C for a protein P , there
exist some passages that link C to P , but not every
passage that mentions P and C does so. This can be
formulated as a multiple instance problem as follows.
Positive bags for our model consist of documents that
are labeled with GO codes. Each instance in a bag is a
paragraph in the document, output by the first stage
of our system. Each paragraph is described by a set
of word count features, along with a set of numerical
features that capture some aspects of the protein-GO
code interaction, such as the average distance between
mentions of the protein and the evidence text for the
GO code. Using this representation, we build three
data sets for our experiments: one each for the Com-
ponent, Function and Process domains in GO.
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4. Experimental Methodology

To optimize the objective functions for the Diverse
Density and Logistic Regression models, we use the
BFGS method (Fletcher, 1980). Since the solutions
to these objectives are usually only locally optimal,
we restart each algorithm 10 times for each run. The
initial parameter settings for the Diverse Density al-
gorithm are chosen to model instances in positive
bags (Maron, 1998). For the Logistic Regression algo-
rithms, the initial parameter settings are chosen uni-
formly at random in (0, 1). When the softmax function
is used, the parameter α is set to 3.

The MI SVM kernels are implemented in the frame-
work of Smooth Support Vector Machines (Lee & Man-
gasarian, 2001). For the supervised SVM, we used
SVMlight (Joachims, 1999). SVMlight is run with the
quadratic kernel, and default parameters otherwise.

FOIL is modified to use more than 52 variables (the
default maximum limit), and is allowed to use up to
255 variables (this is much larger than the dimension
of any of our data sets). On the TrX data set, FOIL
is called with the “accuracy” parameter (“–a”, which
actually measures precision) set to 50. Since this data
set has very few positive examples, FOIL frequently
returns the empty clause without this modification.

We test these algorithms using 10-fold stratified cross
validation on all data sets except the three BioCre-
ative data sets. Every algorithm is given the same set
of folds for each data set. Folds are constructed on
bags, so that every instance in a given bag appears
in the same fold. For the BioCreative data sets, the
data is naturally partitioned into two sets, correspond-
ing to articles published in the Journal of Biomedical
Chemistry (JBC) and those published in Nature. In
our experiments, we use the JBC articles to learn our
models and the Nature articles to test them.

To evaluate the behavior of the algorithms, we
construct Receiver Operating Characteristic (ROC)
curves. These curves measure the true-positive rate of
a classifier versus its false-positive rate as a threshold is
varied across a measure of confidence in its predictions.
To construct ROC graphs from our experiments, we
pool the predictions of the algorithms across all folds.
The supervised learning algorithms in our experiments
generate independent predictions for each instance in a
bag. To generate bag-level predictions from the output
of these algorithms, we take the instance prediction
made at the highest confidence to be the prediction
for the bag. For confidence measures, we use condi-
tional probability estimates of Pr(yi = 1|Bi) for Di-
verse Density and Logistic Regression. For the SVM

classifiers, we use the (signed) margin as a measure of
confidence in the model’s predictions. For the FOIL
algorithm, we modify it to associate a confidence with
each learned clause. This confidence is an m-estimate
of the precision of the learned clause (Lavrac & Dze-
roski, 1994). A test instance or bag is associated with
the confidence of the first rule that covers it, or 0 if no
rule covers it and it is predicted to be negative.

Due to lack of space, we cannot show all the ROC
graphs for all experiments in this paper. In Figure 2
we show the ROC graphs obtained for the MUSK1 and
Tiger data sets. In Table 1 we report a summary statis-
tic, the area under the ROC graph (AROC) for every
data set and algorithm (Bradley, 1997).

5. Discussion of Experiments

From the results in Table 1, we can draw several in-
teresting conclusions.

Different inductive biases are appropriate for different
MI problems. No single MI algorithm dominates over
the others across all data sets. Not surprisingly, algo-
rithms with different hypothesis-space biases are suit-
able for different domains. Thus, Gaussian concepts
perform the best in two domains, linear concepts in
four, quadratic concepts in five and rule-based con-
cepts in one domain. This result suggests that when
addressing an apparent MI problem, one should inves-
tigate a variety of learning approaches.

Ordinary supervised learning algorithms learn accurate
models in many MI settings. While no single algo-
rithm dominates overall, we observe that in general,
supervised learning algorithms do well on many MI
data sets. In fact, for several of the MI data sets we
consider, a supervised learning algorithm is the best
overall. For example, the Quadratic kernel SVM has
the best AROC on three data sets, FOIL working with
a supervised representation on one data set, and Lo-
gistic Regression on one data set. Further, the SVM
with the Statistic kernel is the best on three data sets.
As we noted earlier, this is not a “true MI kernel” in
some sense. Because it allows every instance in a bag
to contribute equally to the transformed feature vec-
tor, it implicitly assumes that the bag’s label applies to
every instance within it. Thus, we consider this kernel
to be a variant of a supervised kernel. Further, ob-
serve that on every data set where the Statistic kernel
does well, the Quadratic kernel (ordinary supervised
learner) also tends to do well, though the reverse is
not true. Finally, we observe that, on the data sets
where MI algorithms are the best, a supervised learn-
ing algorithm is often very close. This is the case for
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Figure 2. ROC graphs for the MUSK1 data set (top) and the Tiger data set (bottom). Each graph shows the ROC curve
for a set of related models. They are, left to right: Diverse Density with 1, 3 and 5 disjuncts and the Gaussian model;
Logistic Regression and Multiple Instance Logistic Regression; SVMs with the Normalized Set kernel, Statistic kernel,
and Quadratic kernel; FOIL and MI/FOIL.

Table 1. Area under ROC curves for each method on each data set. Supervised methods are in italics. Bold values indicate
the best AROC for each data set.

Data DD(1) DD(3) DD(5) Gauss MI/LR LR SVM
(Stat)

SVM
(NSK)

SVM
(Quad)

MI/FOIL FOIL

Musk1 0.895 0.883 0.861 0.795 0.867 0.847 0.937 0.924 0.903 0.621 0.719
Musk2 0.903 0.850 0.838 0.850 0.870 0.837 0.892 0.866 0.847 0.725 0.765

Tiger 0.841 0.814 0.828 0.525 0.890 0.849 0.705 0.848 0.827 0.737 0.806
Elephant 0.907 0.892 0.902 0.734 0.933 0.931 0.856 0.915 0.944 0.821 0.859
Fox 0.631 0.639 0.656 0.554 0.633 0.593 0.618 0.525 0.579 0.655 0.696
Flower 0.878 0.879 0.876 0.603 0.919 0.899 0.874 0.901 0.953 0.831 0.933
Sunset 0.878 0.878 0.878 0.645 0.909 0.899 0.979 0.970 0.969 0.841 0.946
Waterfall 0.857 0.875 0.866 0.581 0.926 0.928 0.950 0.944 0.950 0.776 0.915

TrX 0.805 0.797 0.828 0.340 0.752 0.720 0.550 0.716 0.584 0.543 0.721

Component 0.724 0.720 0.703 0.683 0.867 0.849 0.745 0.724 0.752 0.686 0.744
Function 0.743 0.749 0.748 0.694 0.837 0.863 0.631 0.738 0.800 0.736 0.766
Process 0.820 0.809 0.816 0.792 0.847 0.823 0.742 0.787 0.807 0.766 0.792

MI/LR and LR, for example, on the BioCreative data.
Similarly, while Diverse Density has the best AROC on
MUSK2, the Statistic Kernel does almost as well.

What could explain the relative success of ordinary
supervised learning methods in these domains? While
this question needs to be explored further, we can offer
some intuitive ideas. First, it may be the case that pos-
itive bags frequently have multiple “true-positive” in-
stances (i.e., instances that truly are positive). Recall,
the MI assumption is that each positive bag contains at
least one instance in each positive bag. Many MI algo-
rithms are biased to model positive bags as containing
nearly one positive instance each. For example, with
the noisy-or and softmax combining functions, the in-
cremental benefit of “covering” additional instances
in a positive bag decreases exponentially with num-
ber covered. Thus, a supervised learner may have a

more appropriate bias than an MI learner in domains
in which positive bags contain a relatively high density
of positive instances because the supervised learner’s
objective function changes uniformly as more instances
are classified according to the labels of their bags.

A second possibility is that the nature of the “nega-
tive” instances in the positive bags (i.e. false-positives)
may be different from the nature of the negative in-
stances in negative bags. For example, in the drug
activity domain, false-positives are inactive conforma-
tions of active molecules. Instances in negative bags
are conformations of inactive molecules. It is possi-
ble that, even though the false-positive conformations
are inactive, they are more similar to the active confor-
mations than the conformations of negative molecules.
Now if conformations like these are produced only by
active molecules, then misclassifying them carries no



Supervised versus Multiple Instance Learning

penalty as long as no similar instances are produced
by inactive molecules.

We hypothesize that it may be possible to use differen-
tial misclassification costs to improve the accuracy of
supervised learners in MI domains. Since we expect
to encounter a large number of false positives (i.e.,
negative instances from positive bags) in MI domains,
we can modify the objective function of a supervised
learning algorithm to introduce a higher cost for false
positives (FPs) than for false negatives. A “false neg-
ative” in this context refers to an instance from a posi-
tive bag that is classified as negative; such an instance
could well be a true negative with respect to the un-
derlying target concept. We conduct an experiment
in which we use six data sets where the MI version of
Logistic Regression has accuracy superior to the su-
pervised version when the misclassification costs are
uniform (see Table 1). For each data set, we run stan-
dard LR with FP cost multipliers ranging from 1 to
10. Let L(x) denote the area under ROC for LR when
the cost multiplier is x. L(1) is therefore the same
as standard LR. Let M denote the area under ROC
for MI/LR. Then for each dataset and multiplier x, we
plot the quantity

(
L(x)−L(1)
M−L(1)

)
. This quantity measures

the fraction of the difference in area between MI/LR
and LR that is “recovered” by varying the cost mul-
tiplier. If this quantity is positive for some multiplier
x, then LR with that multiplier does better than stan-
dard LR. If the quantity reaches 1 for some x, then
LR with cost multiplier x achieves the same AROC as
MI/LR. Figure 3 shows the results of this experiment.
From this figure, we observe that for two data sets,
Musk1 and TrX, increasing the cost multiplier results
in models that equal the predictive accuracy of MI/LR.
For Musk1, the final AROC for LR with a cost mul-
tiplier of 10 exceeds the AROC of MI/LR. For three
other data sets, Musk2, Tiger and Fox, the area also
improves as the false positive cost is increased (about
25% of the initial difference is recovered); however, the
models constructed by MI/LR remain more accurate
for all cost multipliers. Finally, we observe that on the
Flower data set, using any cost multiplier greater than
1 results in a decrease in accuracy. Thus, in five out
of six cases, we can improve the accuracy of the su-
pervised models by tuning false positive costs, and in
two cases we are able to equal or exceed the accuracy
of the MI models by using this technique.

Some MI algorithms learn consistently more accu-
rate models than their supervised-learning counter-
parts. Though supervised algorithms in general do well
on MI data sets, if we restrict our attention to com-
parisons between each MI algorithm and its supervised
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Figure 3. Effect of increasing the cost of false positives for
the Logistic Regression algorithm. On the x-axis is the
multiplier for the false positive cost (1 represents equal FP
and FN costs). The y-axis shows the fraction of AROC
difference between MI/LR and LR at FP cost=1 that is
recovered as the cost changes. Thus, a value of 1 means
that LR and MI/LR have the same AROC.

counterpart, we obtain a more mixed picture. Thus,
Diverse Density is always superior to the supervised
Gaussian model. Similarly, the MI/LR algorithm is
often superior to the LR algorithm (9 out of 12 data
sets). Therefore, for these algorithms, taking the MI
setting into account when learning from MI data is
usually useful. In the case of SVMs, on the other hand,
there is not a clear winner between the supervised and
the MI methods. With FOIL, the MI representation is
always worse than its supervised learning counterpart.
The MI representation for FOIL suffers from low re-
call (recall is identical to the true positive rate). This
can be seen in the graphs in Figure 2. Since FOIL’s
“combining function” is an absolute disjunction, there
is no gain in modeling more than one instance from
any bag. This bias prevents it from trying to cover as
many instances in a positive bag while still not cover-
ing any negatives, and leads to lower recall on the test
set. This also indicates that there is often more than
one positive instance in any positive bag.

Multiple-Instance Logistic Regression is a competitive
method. Finally, we observe that the algorithm we
have introduced in this work, MI Logistic Regression,
performs quite well on many data sets. In data sets
where it is not the best performer, it is almost always
among the three best algorithms.

6. Conclusion

We have empirically evaluated the applicability of or-
dinary supervised learning algorithms to MI problems.
We observe that different MI approaches are suited to
different domains and some MI algorithms are always
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superior to their supervised counterparts. However,
ordinary supervised learning algorithms also do well
on many MI domains, and sometimes are the best al-
gorithms for a task. Further, using higher false posi-
tive costs with supervised algorithms can improve their
performance in MI domains. We have also introduced
a novel MI algorithm that adapts Logistic Regression
to MI data, and shown that it is competitive with other
MI algorithms on our tasks.

Where then are algorithms with explicitly encoded MI
biases relevant? Such algorithms may be useful in at
least two situations which we have not investigated.
First, it may be necessary not merely to be able to
classify a bag correctly, but to return a positive in-
stance from a positive bag. For example, in the drug
activity domain, the algorithm may need to provide
insight to the chemist about the structure of active
conformations. Second, such algorithms may also be
useful in domains with very sparse data. For example,
Zhang et al. (2002) have investigated the task of re-
trieving images from a database assuming the target
represents images a user has labeled as “interesting” or
not. In this case, the algorithm may have to deal with
a training set of only a few bags. If the bags contain
many false positives, it is likely that an explicit MI
bias will help the learning algorithm. These directions
may prove fruitful in future work.
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